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Abstract

We explore the problem of sharing network resources when users’ preferences lead
to temporally concentrated loads, resulting in an inefficient use of the network. In
such cases external incentives can be supplied to smooth out demand, obviating the
need for expensive technological mechanisms. Taking a game-theoretic approach,
we consider a setting in which bandwidth or access to service is available during
different time slots at a fixed cost, but all agents have a natural preference for
choosing the same time slot. We present four mechanisms that motivate users to
distribute the load by probabilistically waiving the cost for each time slot, and
analyze the equilibria that arise under these mechanisms. 1

1 Introduction

Competition for network resources is intrinsic to a network’s operation and
leads to congestion. Since users access resources in a distributed and uncoordi-
nated fashion, it is common for a network to experience congestion even when
the average demand for a resource is much less than its capacity. Some of these
congestion epochs are simply a product of the statistical nature of user access
patterns and traffic types, and are thus unpredictable. To cope with this lack
of coordination among users and the unpredictability of congestion epochs,
networks send “congestion signals” to users to help them share its resources
in a fair and satisfactory fashion. For example, packets at a congested router
may be either dropped or marked [5].

1 This work was supported by DARPA grant F30602-00-2-0598 and by a Stanford
Graduate Fellowship.
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A great deal of network congestion is not only caused by a lack of coordina-
tion, but also by users who aim to selfishly maximize the bandwidth available
to them (see Shenker [18]). There exists a substantial body of work on the fair
management of this sort of congestion in networks. In particular, the problem
of designing congestion control and pricing mechanisms to provide differenti-
ated qualities-of-service (QoS) in the Internet has received a lot of attention
recently. The first common type of solution to this problem is technologi-
cal: the network can erect “bandwidth firewalls” between packet flows using
scheduling algorithms like Weighted Fair Queuing [3]. Such scheduling algo-
rithms decrease or eliminate the dependence of one flow’s QoS from the QoS of
other flows. They can be difficult to implement in high-capacity routers, how-
ever, as they require the maintenance of per-flow state to distinguish, buffer
and schedule the packets of individual flows. This has led researchers to ex-
plore trading off performance for simplicity of implementation, yielding router
mechanisms that provide approximate fairness [6,17,16].

An alternate line of research takes an economic approach to congestion man-
agement. Following this approach the network attempts to induce users to
condition their flows; this avoids the implementation complexity inherent in
erecting explicit bandwidth firewalls. Using ideas from economics, MacKie-
Mason and Varian [12] argued that this incentive can be provided by charging
agents for the damage caused to others by their ill-conditioned flows. This work
proposes a “smart market” that uses bids to set a price for network usage at
each of several time slots. Gibbens and Kelly [8] suggest charging a user for
the role its packets play in causing congestion; see also [9] and [10]. Odlyzko
[14] proposes “Paris Metro Pricing”: partitions of the network that behave
identically but charge different prices, inviting users to choose the partition
they believe will offer the best balance of cost and congestion.

In some situations, times of high demand are regular and predictable. Such
focused loading can occur because many users’ utility functions are maximized
by using the network at some specific time. For example, early studies of long-
distance telephone networks show a spike in usage when rates drop [13]. Figure
1 is a representative graph adapted from p. 450 of this paper, which shows
telephone network traffic versus time of day. Note that usage falls off before
the 1 PM rate drop, spikes afterwards and then falls off again. A recent study
[1] considers dial-up data traffic in Ireland and the UK— where ISPs provide
free Internet access but users pay for the duration of their phone connections—
where a focused load on the telephone network occurs from an increase in data
connections when phone charges drop. Web servers also experience focused
loading just before deadlines, or just after new content or services are made
available. While these times are known well in advance, users have no incentive
to avoid accessing the web site close to the deadline and thus can cause server
overloads or crashes, to which system managers typically respond by buying
more resources.
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Fig. 1. Quarterly Trunk Calls on Weekdays in the United Kingdom, December 1975

What approaches would more directly address the source of the problem? It
is instructive to examine a particularly elegant solution employed by radio
broadcasters. To boost audience levels, radio shows routinely offer prizes to
listeners such as concert tickets, vacations and money. Listeners tune in, wait
for a signal such as a particular song and then call in hoping to win the
prize. Of course, this invites an episode of severe focused loading at the switch
board of the radio station as many listeners simultaneously call. The brilliantly
simple way out is to announce that “caller number 9” will be the winner. This
provides an incentive for listeners to randomize their call-in times—calling in
too early or too late will not work—and the focused load is thereby diffused.

Of course, many of the general-purpose congestion management techniques
surveyed above may also be applied to the special case of focused loading.
We believe, however, that separate consideration of this special case is worth-
while, for two main reasons. First, the fact that focused loading occurs at
very predictable times means that it is possible to know in advance the cases
for which a specialized solution should be used. Second, the generality of the
above congestion management techniques prevents them from explicitly tak-
ing into account information about agent valuation functions. Focused loading
occurs because many agents prefer to use the network at the same time. This
additional knowledge makes it possible to design mechanisms that collect more
revenue and make fewer (e.g., computational) demands on the network.

In this paper 2 we propose a game theoretic model of the problem of defocusing
predictable and time-dependent focused loads. We attempt to explain why
techniques such as the radio show announcement can be effective, while also

2 A preliminary version of this paper was presented at the ACM Conference on
Electronic Commerce, 2001 [11].
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contributing a formal model that permits analysis. While we do not rely on
any particularly advanced results from game theory or mechanism design,
we do assume that the reader is familiar with such concepts as individual
rationality, risk attitudes (e.g,. risk neutrality, risk aversion) and dominant
strategies. Also in the game theoretic tradition, we refer to users as agents.
Good introductions to the concepts listed above are provided in [7,15].

In Section 2 we give a formal model of the temporal resource contention prob-
lem, define metrics for evaluating agent distributions and related notions of
optimality, and specify agent utility functions. In Section 3 we propose a sim-
ple mechanism under which load balancing is a weak equilibrium for agents
who value slots identically. We strengthen this to a strict equilibrium in Sec-
tion 4 and also prove that this mechanism is arbitrarily close to optimal. In
Sections 5 and 6 we relax the assumption that all agents have identical utility
functions and present two mechanisms that balance load when only bounds on
agent valuations are known. Since these mechanisms cannot take into account
exactly how much each agent would be willing to pay to use the network, these
mechanisms are not optimal; however, we prove a bound on their optimality
which depends on the tightness of the bound on agent utility functions. If
these mechanisms were used in the original case where agents value slots iden-
tically, then they too would be arbitrarily close to optimal. Finally, in Section
7 we summarize and compare the four mechanisms presented in this paper.

2 Problem Definition

In order to motivate the notation that we will use throughout the paper, it is
helpful to begin with an example. Consider a network resource with a fixed
number of identical time slots, where usage cost does not depend on the time
slot. For example, consider a usage-based web service such as a pay-per-view
streaming video service in which usage is divided into half-hour blocks from 7
PM to midnight. We assume that each agent wants to use the network during
only one time slot, that each agent knows his own valuation for each slot, and
that all agents’ utilities are maximized by using the network during the same
slot. For example, all agents might prefer to use the network from 7:00 to 7:30,
having strictly monotonically-decreasing valuations for later slots as compared
to earlier slots. Since time slots are priced identically, rational agents would
all choose to use the network from 7:00 to 7:30, leading to a focused load. We
further assume that although the capacity of the network resource is unlimited
(e.g., hosted on an ASP) the operator of the resource has an exogenous desire
for users to de-focus their demands (e.g., the ASP charges the operator for
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peak bandwidth used 3 ).

2.1 Mechanism Characteristics

In order to spread out the focused load, the network will provide agents with
an incentive to choose slots other than s. In this paper we will consider mech-
anisms in which agents are probabilistically spared the usage cost for the slot
they choose. The cost of using the slot is waived according to a probability
which depends on the slot chosen, and which is independent of the probabili-
ties corresponding to other slots.

More formally, a mechanism Φ is defined by a tuple 〈t,m,N, f(.)〉. The net-
work operates over t time slots, where each slot has a fixed usage cost of m, and
where the set N of n agents, a1 . . . an, intend to use the network. Each agent ai

takes an action Ai of using a slot. The function f : A1×· · ·×An → [0, 1]n maps
the actions taken by all agents into individual probabilities Pi that the cost of
the slot chosen by ai will be waived. Though f is specified by the mechanism,
the network must draw from each Pi to determine whether the usage cost will
actually be waived for each agent. Note that the Pi’s are independent. By q we
denote the expected number of slots that will be offered to at least one agent
for free. The distribution of agents is denoted d, and so d(s) is the number of
agents who chose slot s.

2.2 Agent Characteristics

We assume that all agents are risk neutral. Agent ai’s valuation for slot s is
given by an arbitrary non-negative function vi(s). Let si = arg maxs vi(s) and
si = arg mins vi(s). Because we are concerned with cases in which focused
loading occurs we will assume that all agents have identical and unique most-
and least-preferred slots, although this assumption is not required for any of
our results. (If agents find several slots to be the most preferable, some amount
of load balancing is likely to occur without any intervention by the network,
as agents will distribute themselves across these slots.) Therefore, we define
constants s and s such that for all i, si = s and si = s. In sections 3 and 4
we will make the assumption that all agents’ valuation functions are identical

3 A number of proposals for usage-based pricing of bandwidth suggest charging
according to the “effective” bandwidth consumed by an operator. Roughly, the ef-
fective bandwidth of a connection is a value between the mean and peak bandwidths,
capturing the trade-off between the long-term average amount of bandwidth used
by the connection and the instantaneous peak bandwidth consumption. See, for
example [4], and the references therein.
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(in these sections we will use the notation v rather than vi to describe agents’
valuations). Of course this assumption is not realistic; we relax it in sections
5 and 6. Let vl and vu be lower and upper bounds on all agents’ valuations,
respectively: i.e., ∀i, s vl(s) ≤ vi(s) ≤ vu(s). It is important to note that these
bounds apply to all agents: in our model no agent has a valuation for slot s
lower than vl(s) or higher than vu(s). 4 Using this notation, the restriction on
agents’ valuations in sections 3 and 4 can be understood as the case where
∀s vl(s) = vu(s). Finally, each agent ai may also receive a signal from the
network, denoted σ(ai).

In our model, the decision faced by agents is simply to choose a slot s. The
space of agent strategies S is the space of all functions mapping from the
information available to a probability distribution over slot choices. We denote
an element of S as S = Π(s): a distribution over slot choices. Agents are
aware of the mechanism and consider it when determining their strategies.
Let ϕ ∈ Sn denote a set of agent strategies, which we formally call a strategy
profile. Let ϕ(i) denote ai’s strategy under strategy profile ϕ, and let {ϕ\ i, S}
denote the strategy profile where all agents j �= i choose the strategy ϕ(j) and
agent ai chooses the strategy S. We can write agent ai’s expected utility under
strategy profile ϕ (recall that ϕ(i) is a distribution over slot choices for agent
ai, and hence ϕ(i)(s) is the probability that agent ai will choose slot s under
strategy profile ϕ):

ui(ϕ) =
t∑

s1=1

. . .
t∑

si=1

. . .
t∑

sn=1

[(
ϕ(1)(s1) · . . . · ϕ(n)(sn)

)
·

(
vi(si) −

(
1 − f(s1, . . . , sn)i

)
m

)]
(1)

We can now give a key definition:

Definition 1 ϕ is a Nash equilibrium of Φ if ∀i,∀S, ui(ϕ) ≥ ui({ϕ \ i, S}).

Intuitively, no agent can gain by unilaterally deviating from a Nash equilib-
rium. This type of equilibrium is also referred to as a weak Nash equilibrium
since it is possible that the agent receives equal utility from alternative strate-
gies. When no such alternative exists, we have a strict Nash equilibrium:

4 While these bounds strengthen our results, the assumption that they exist is not
unrealistic. The upper bound is easily justified by the fact that no agent is willing
to pay an arbitrarily large amount. The lower bound is trickier, since agent ai might
simply not be interested in using some slot s (i.e. vi(s) = 0). However, since we’re
interested in defocusing the load, in practice we will be considering time slots that
agents want to use. Therefore, it is not unrealistic to assume that every agent has
a non-zero valuation for every slot.
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Definition 2 ϕ is a strict Nash equilibrium of Φ if ∀i,∀S �= ϕ(i), ui(ϕ) >
ui({ϕ \ i, S}).

Equation (1) is complicated because it accounts for the calculation of the
probability that slot si is free, starting from a strategy profile. Although this
definition of utility is necessary for discussing Nash equilibria, in other parts of
the paper we will find it more convenient to take as given the same distribution
p for all agents, indicating the probability of each slot being free. We can then
specify an expression for ai’s expected utility for choosing slot s:

ui(s) = vi(s) −
(
1 − p(s)

)
m (2)

2.3 Restrictions on the Class of Mechanisms

We now consider restrictions on the class of mechanisms that could be used
to solve the focused loading problem, not to make the problem easier to solve,
but in order to identify solutions with desirable characteristics. First, we in-
troduce a restriction concerned with agents’ incentives to participate (as dis-
cussed below, this condition is stronger than the standard mechanism design
requirement of individual rationality). Next, we discuss restrictions that could
arise from implementation considerations and the case of continuous pricing.

Definition 3 A mechanism Φ is participation-safe if and only if m ≤ vl(s).

We will consider only participation-safe mechanisms in this paper; that is, we
require that the fixed usage cost for the network resource must never exceed the
lower bound on any agent’s valuation for his most-preferred slot. Intuitively,
this means that every agent will always be able to choose at least one slot in
which his payment will never exceed his valuation, and hence that it will be
rational for him to participate regardless of how the mechanism assigns free
slots. Observe that participation-safety implies individual rationality, because,
regardless of Pi, agent ai can choose slot s and achieve a non-negative utility.
Individual rationality does depend on Pi, and thus is a weaker condition.

We do not restrict the class of mechanisms in order to simplify analysis. As
it turns out, it is very easy to design and analyze mechanisms that have a
fixed cost exceeding all agents’ valuations, and then reward agents only when
they behave as desired. Such mechanisms can have good theoretical charac-
teristics (such as optimality, defined below) and can remain consistent with
individual rationality by assuring agents non-negative expected gain. Indeed,
it turns out that in what follows, everywhere we prove ε-optimality or (c+ ε)-
optimality, we could prove optimality or c-optimality, respectively, if we were
not restricted to participation-safe mechanisms. However, we believe that such
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mechanisms would be considered unreasonable to deploy in practice despite
their theoretical benefits, because they address the problem of focused load-
ing by threatening agents with unviable alternatives—slots whose expected
costs exceed agents’ valuations—rather than giving agents positive incentives
to behave as desired.

Because of the difficulty of implementing complex protocols on a highly-loaded
network resource, it is worthwhile to consider various other restrictions on the
class of mechanisms. For example, it may or may not be possible to reimburse
agents after all agents have chosen a slot, as opposed to doing so after each
agent chooses. Also, it may or may not be permissible for f to depend on what
slots agents chose, as this would require that information be stored for each
agent, and again that billing be deferred until after all agents have selected
slots. In some settings it might not be reasonable for the network to give
signals to agents; in other cases, it would be possible to give signals but not
to record which signals were given to which agents. The significance of the
time, space and communication complexity of the mechanism may also vary
depending on the setting. We discuss these and other trade-offs in section 7.

Also, it might appear that more powerful mechanisms could be designed if
prices could be varied arbitrarily, as opposed to our model in which slots must
be priced at either m or 0. In fact, since we assume that agents are risk-
neutral, agents will be indifferent between any slot priced on the range [0,m]
and the same slot made free with an appropriate probability. Furthermore, m
can be increased arbitrarily. In the case of risk-averse agents, such ‘continuous
pricing’ would be useful: our results throughout this paper hold for risk-averse
agents if and only if this sort of continuous pricing scheme is used. We have
chosen not to emphasize continuous pricing because it would be likely to make
greater computational and communication demands on the network; however,
all our results are compatible with such a scheme, and furthermore our bounds
on q and m (see, e.g, equations (7), (8), and (9)) may be dropped in this case.

2.4 Evaluating Outcomes

The network has two aims: to balance the load caused by the agents’ selection
of slots and to collect as much revenue as possible. We denote the network’s
expected revenue given a mechanism Φ and equilibrium ϕ as E[R|Φ, ϕ]. The
network collects a payment of m from each participating agent except for those
who receive free slots. Expected revenue is given by:
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E[R|Φ, ϕ] =
n∑

i=1

t∑
s1=1

. . .
t∑

sn=1

[(
ϕ(1)(s1) · . . . · ϕ(n)(sn)

)
·

(
1 − f(s1, . . . , sn)i

)
m

]
(3)

We define g as the monetary value to the network of the variance of load across
the set of time slots. Lower variance corresponds to a more even load and thus
to a higher dollar value; thus g must decrease strictly as variance increases.
We will say that load is balanced when g is maximized, which corresponds to
minimal variance. We define the superlinear summation class of functions to
be the set of functions in which g(d) = −κ

∑
i h(d(i)), where h is superlinear

in d(i) and κ is a constant that is used to indicate the relative importance
of load balancing to the network. Note that this measure is only reasonable
if we assume that each agent consumes about the same amount of load. The
expected value of load balancing is given by:

E[g|ϕ] =
∑
d

g(d)Prob(d|ϕ) (4)

Maximizing revenue and maximizing g are conflicting goals, as it costs the net-
work more to induce an agent to choose slot s than to choose slot s. Indeed,
note that revenue is maximized in the original focused loading equilibrium
when all agents choose s and ∀i Pi = 0. According to our problem definition,
agents are willing to distribute themselves this way, and thus this equilibrium
can be achieved without waiving any agents’ usage fees. In some systems this
could be a desirable outcome; however, we have assumed that the mechanism
designer would prefer at least some balancing of the load. The network must
therefore trade off quality of load balancing against expected revenue; the
degree of trade-off desired may be specified through the choice of κ. Given
definitions of the expected values R and g, we can define z, the network op-
erator’s evaluation of equilibrium ϕ of mechanism Φ:

z(Φ, ϕ) = E[R|Φ, ϕ] + E[g|ϕ] (5)

It will be useful to define the best possible distribution of agents given a free
slot distribution that applies to all agents. Imagine a mechanism Φall in which
all strategy profiles are in equilibrium, and Pi = p(Ai). Intuitively, this is the
best distribution of agents for the mechanism, given the constraint that the
free slot distribution must be the same for all agents.

Definition 4 A distribution d is ideal for p(s) if and only if an equilibrium
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ϕ which deterministically results in distribution d maximizes z(Φall, ϕ).

Note that this expression may not have a unique maximum. We will denote
an ideal distribution d as d∗.

Next, we define the optimality of an equilibrium under a mechanism. Essen-
tially, an equilibrium of a given mechanism is optimal if there does not exist
another equilibrium of any other mechanism that yields a higher expected
value of z.

Definition 5 A mechanism-equilibrium pair (Φ, ϕ) is optimal if and only if
for all other pairs (Φ′, ϕ′), z(Φ, ϕ) ≥ z(Φ′, ϕ′), where n is held constant.

This definition of optimality is problematic when agents have different valu-
ation functions that are not known by the network—the case we take up in
sections 5 and 6. An optimal mechanism for this case would have to set each
agent’s expected payment to exactly his valuation for any slot chosen, by con-
structing a different Pi for each agent. For every set of agents there does exist
a set of such mechanisms. However, it is impossible to select such a mechanism
based on the information available; furthermore such a mechanism will violate
our restriction that it be participation-safe, because an agent ai who chooses
slot s is charged vi(s), which can be exceed vl(s). To overcome this difficulty
we provide an alternate notion of optimality that bounds the average loss per
agent as compared to an optimal mechanism:

Definition 6 A mechanism-equilibrium pair (Φ, ϕ) is c-optimal if and only if
for all other pairs (Φ′, ϕ′), z(Φ, ϕ) + cn ≥ z(Φ′, ϕ′), where n is held constant
and c > 0.

For convenience, we will also make use of the term [c-]optimal to refer to
equilibria alone, in cases where the mechanism giving rise to the equilibrium
is unambiguous.

Definition 7 An equilibrium ϕ is [c-]optimal if ϕ is an equilibrium of mech-
anism Φ, and (Φ, ϕ) is [c-]optimal.

We call ϕ′ where all agents choose the same slot a focused-loading equilibrium.
We assume that g and v do not take values that would cause ϕ′ to be optimal.
This assumption is only required for our proof of Theorem 2, but it is a
reasonable one for us to make since if ϕ′ were optimal, we would have no
problem to solve in the first place.
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3 Preselection Mechanism

In this section we consider a simple mechanism, designed to make agents indif-
ferent between all time slots despite their initial preferences. This mechanism
will be formally referred to as Φ1, and informally called ‘preselection’, since
it decides which slots will be free before observing the actions of the agents.
This mechanism is unrealistic in several ways, and we do not discuss it here
in order to propose that it should be used in practice. Indeed, such a mecha-
nism is an obvious first approach to the problem of focused loading, and so it
is important to demonstrate its insufficiency. Furthermore, the exposition of
this mechanism will prove useful as a starting point for the discussion of more
sophisticated mechanisms.

Φ1works as follows:

(1) The network determines free slots by drawing from p. (Thus, Pi = p(Ai).)
(2) Agents choose a slot.

3.1 Equilibria

We know from the definition of the problem that when there is no chance
that they will win a free slot agents prefer slot s to slot s. We can overcome
this preference by biasing p(s). An agent’s expected utility is given by ui(s) =
v(s)− (1− p(s))m. Recall that we assume vl = vu until section 5; here we use
(unsubscripted) v to denote the valuation function that all agents share. We
can make agents indifferent between slots by requiring that all time slots will
have the same expected utility for agents: that is, that the expected utility
derived from each time slot is equal to the average expected utility over all

time slots. This is expressed by the equation v(s)−
(
1−p(s)

)
m = 1

t

∑
i

(
v(i)−

(
1 − p(i)

)
m

)
. Algebraic manipulation and q = Σsp(s) give us:

p∗(s) =

1
t

(
qm +

∑
i v(i)

)
−v(s)

m
(6)

Observe that since free slots are free for all agents, q represents the expected
number of free slots. Because we will find this probability distribution useful
throughout the paper, we have given it a name: p∗.

If free slots are awarded according to p∗, it is a weak Nash equilibrium for
all agents to select a slot uniformly at random. We will call this equilibrium
ϕ1. Consider the case where all other agents play according to ϕ1, and one
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remaining agent ai must decide his strategy. Since the choice of any slot entails
equal utility on expectation, ai can do no better than to randomly pick a slot.
Again, ϕ1 is only a weak equilibrium: indeed, there is no strategy ai could
follow that would make him worse off.

We now make several remarks about the preselection mechanism. First, note
that the above analysis assumes that ai is risk-neutral. If ai is risk-averse, he
will prefer slot s, since it gives the largest fixed payment, v(s). Second, this
mechanism is not susceptible to collusion, because each agent is indifferent
between all pure strategies regardless of the actions of other agents. Finally,
since all strategy profiles are weak equilibria under the preselection mecha-
nism, it would be reasonable to ask why we pay special attention to ϕ1. It may
be argued that randomization is a “natural” response to indifference, and so
we will consider this as a primary case in the next subsection; however, none
of our results depend on the assumption that agents will choose this strategy.

3.2 Bounds on q and m

It appears that deviation from ϕ1 will never be profitable for agents, since
we have guaranteed that all slots provide the same expected utility. Consider
the most profitable deviation, from s to s. We have claimed that the utility of
both slots is the same: v(s)−

(
1−p(s)

)
m = v(s)−

(
1−p(s)

)
m. However if qm

is too small or too large, p(s)− p(s) > 1 will hold. Since we want to interpret
p(s) and p(s) as probability measures, we must add the constraints p(s) ≥ 0
and p(s) ≤ 1. Without these constraints, the equation for p∗ still makes sense
if we consider continuous pricing rather than our default model of free/non-
free slots; p > 1 corresponds to an expected slot cost of less than zero (paying
agents to choose a slot) while p < 0 corresponds to an expected slot cost of
more than m. Substituting p(s) ≥ 0 into equation (6) and rearranging, we get:

q ≥ tv(s) − Σiv(i)

m
(7)

For the second condition, we require that p(s) ≤ 1, which gives us:

q ≤ t
(
v(s) + m

)
−Σiv(i)

m
(8)

We must also ensure that a value of q exists for a given m and v. Intersecting
the two bounds and simplifying, we get:
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m ≥ v(s) − v(s) (9)

Indeed, if m < v(s) − v(s) then if an agent were certain to win a free slot in
s and guaranteed never to win a free slot in s, he would still prefer s to s.

3.3 Maximizing Revenue

Equation (3) gave a general expression for E[R|Φ, d]. However, under equilib-
rium ϕ1 all agents randomly select a slot, which allows us to write an expression
for E[R|Φ1, ϕ1] that does not include a summation. In ϕ1 expected revenue is
given by the percentage of non-free slots times cost per slot times number of
agents:

E[R|Φ1, ϕ1] =
(
1 − q

t

)
mn (10)

Increasing m will increase expected revenue; however, recall that we require
that the mechanism be participation-safe, and hence that m ≤ vl(s). Regard-
less of the particular value of m, reducing q (the expected number of free slots)
will increase expected revenue.

We will now show how the network can maximize revenue. We define vavg as
1
t

∑
s v(s). The requirement that an agent’s utility for slot s must be greater

than or equal to zero—i.e., that v(s) −
(
1 − p(s)

)
m ≥ 0—can be rewritten,

substituting in p∗, as vavg−(1− q
t
)m ≥ 0. The seller’s revenue will be maximized

when all agents get zero utility. Thus we must have:

(
1 − q

t

)
m = vavg (11)

We substitute in the lower bound for q from equation (7): i.e., q = 1
m

(
tv(s)−

Σiv(i)
)
. Rearranging for m, we get m = v(s). This satisfies equation (9) and

ensures that the mechanism is participation-safe, so we are done.

This is intuitive because when we minimize q we set p(s) = 0. We know
that agents are indifferent between all slots, and so agents will be willing to
choose any slot when the cost of s does not exceed their valuation. We thus
set m = v(s) and (plugging m into the lower bound on q) q = t

(
1−vavg/v(s)

)
.

We have shown that each agent can be made to pay an expected amount ex-
actly equal to his utility for any slot he chooses. However, ϕ1 is not guaranteed
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to achieve an ideal distribution of agents, and therefore ϕ1 is not optimal. The
easiest way to show this is to present another equilibrium of the preselection
mechanism that is optimal.

3.4 Optimal Equilibria

Consider an equilibrium in which each of the agents deterministically chooses
one slot. (Recall that any strategy is rational under Φ1, and thus that any set
of strategies is a weak equilibrium.) In one such equilibrium, agents determin-
istically choose slots so that the distribution of all agents is ideal; we will call
this equilibrium ϕ∗

1. Unsurprisingly, we can show:

Theorem 1 (Φ1, ϕ
∗
1) is optimal.

PROOF. Please see the appendix.

REMARK. Recall that a mechanism-equilibrium pair is optimal when there
does not exist another mechanism that has an equilibrium giving rise to a
distribution that yields a higher value according to the evaluation function z.

The equilibrium ϕ∗
1 is optimal, but it is extremely unlikely that it would arise

through the choices of real agents. As mentioned above, the fact that agents are
indifferent between all slots means that every combination of agent strategies
is a weak equilibrium. In fact, the preselection mechanism gives rise to many
equilibria that minimize g(d). For example, the case in which all agents choose
slot s is a weak equilibrium. Since discouraging focused loading is the purpose
of the preselection mechanism, it is undesirable to find that such behavior
remains an equilibrium! However, this drawback is inherent to the setting
as we have modeled it so far; a preselection mechanism can only yield weak
equilibria or focused-loading equilibria.

Theorem 2 When agents have identical utility functions and no signals are
given to agents and the network preselects p before agents move, all equilibria
are either weak or focused-loading.

PROOF. Please see the appendix.

REMARK. Intuitively, this proof shows that under the conditions of the
preselection mechanism any incentive given to one agent is given to all the
agents, and that the mechanism designer must therefore choose between en-
couraging all agents to choose the same slot and making all agents indifferent
between a set of slots.
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In fact, we can show another negative result: there does not exist an optimal
mechanism that is participation-safe and that gives rise to a strict equilibrium.

Theorem 3 There does not exist an optimal (Φ, ϕ) for which ϕ is a strict
equilibrium and m ≤ v(s).

PROOF. Please see the appendix.

Theorem 3 shows that strict, optimal equilibria do not exist for participation-
safe mechanisms. However, if we allow networks with different characteristics
than those we allowed in this section, we can see that it is possible to get close
to a strict, optimal equilibrium when agents have identical utility functions
and no signals are given to agents, and p depends on the agents’ actions.
Intuitively, consider a mechanism that sets p = (1 + ε)p∗ if agents achieve
an ideal distribution, and p = 0 otherwise. Further, consider a set of (pure)
agent strategies where agents happen to distribute themselves according to d∗

for p∗(s). This is an equilibrium because agents are penalized for deviating.
Intuitively, it is nearly optimal because agents achieve an ideal distribution
with respect to the mechanism, and the probability of awarding free slots is
arbitrarily close to the probability from the optimal mechanism-equilibrium
pair described in theorem 1. However, it would be extremely difficult for agents
to coordinate to this equilibrium in real play. In the next section we will show
how the use of a non-binding coordination phase before the selection of slots
can help agents to reach strict, nearly-optimal equilibria.

4 Bulletin Board System Mechanism

In this section we assume that agents are given a bulletin board system: a forum
in which all communications are visible to all agents and the identity of agents
is associated with their transmissions. For simplicity, we allow a very limited
form of communication: agents indicate the slot that they intend to choose.
We assume that agents do not all indicate slots at the same time; rather, they
indicate sequentially during the first phase. Let dj(s) denote the number of
agents who have indicated that they will choose slot s after a total of j agents
have posted to the bulletin board. d∗ will again be the ideal distribution for
p ∗ (s). Agents’ communications through the bulletin board are cheap talk : a
technical term that indicates that these communications are not binding in
any way. Even so, the bulletin board can help agents to coordinate on desirable
equilibria. Mechanism Φ2 follows:

(1) The network picks “potentially free” 5 slots according to (1 + ε)p∗.

5 We redefine q as the expected number of “potentially free” slots; the same redef-
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(2) Agents communicate through the bulletin board.
(3) Agents choose time slots.
(4) If d = d∗, then “potentially free” slots are made to be free. That is,

Pi = p∗(Ai). Otherwise, all agents are made to pay for their slots (Pi = 0).

4.1 Equilibria

A strict equilibrium in Φ2, which we call ϕ2, is for the ith agent to indicate
on the bulletin board a slot s such that di−1(s) < d∗

i (s), and ultimately to
choose that slot s. Consider the case where all other agents follow ϕ2 and
agent ai must decide his strategy. If ai cooperates and chooses slot s then
the distribution of agents will be d∗ and so ai will receive an expected utility
of v(s) −

(
1 − (1 + ε)p∗(s)

)
m. If ai defects to slot s′, one of two cases will

result. In the first case, agents indicating their choices after ai will compensate
for his deviation by choosing different slots; thus ai will receive the same
expected utility as he would have received if he had not deviated. In the
second case, ai will be late enough in the sequence of agents indicating their
choices that the agents who indicate after him will be too few to bring the
distribution back to d∗. In this case ai will receive an expected utility of
v(s′)−m. The key point is that ai does not know the total number of agents,
and so he must assign non-zero probability to the second case, regardless of
the number of agents who have already indicated. Furthermore, we must show
that ai will choose the slot he indicated on the bulletin board even though his
selection was not binding. If all other agents follow ϕ2 then there is clearly
no incentive for ai to choose a different slot than he indicated, because that
would certainly prevent d = d∗ and reduce his payoff. Therefore ϕ2 is strict
as long as v(s) + (1 + ε)p∗(s)m > v(s′) for all s, s′ such that 1 ≤ s, s′ ≤ t.
Simplifying, we derive the conditions similar to those described in section 3.

tv(s) − Σiv(i)

m
≤ q ≤ t

(
v(s) + m

1+ε

)
−Σiv(i)

m
(12)

Again, we must intersect the two bounds to get a bound on m, which we
combine with the constraint on participation-safe mechanisms:

(1 + ε)
(
v(s) − v(s)

)
≤ m ≤ v(s) (13)

This equilibrium relies on the fact that each agent can choose a slot as if he
were the last agent and achieve the distribution d∗, even if all agents before

inition is required for section 6.
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him chose slots in this same way. We prove that this greedy approach works
in section 4.2.

An analysis of the possibility of collusion in the bulletin board mechanism
is not appropriate, because agents are already encouraged to coordinate with
each other. Any agent or cartel of agents who deviated would hurt themselves
along with all other agents.

It is well known that any game having an equilibrium arising from cheap talk
coordination has other equilibria in which agents ignore the cheap talk [2]. The
bulletin board mechanism is no exception. All agents choosing s (focused load-
ing) is an equilibrium when the resulting d could not be transformed into d∗ by
one agent choosing a different slot. Note, however, that ϕ2 Pareto-dominates
all equilibria where the cheap talk is ignored and a different distribution re-
sults.

4.2 Greedy Assignment of Slots

In ϕ2 each agent chooses a slot that would result in an optimal distribution
if he were the last agent to post to the bulletin board. For this reason it
is important to show that we can assign slots to agents greedily, with the
guarantee of achieving the ideal distribution for whatever number of agents
eventually participate.

We must introduce new notation to describe changes as each agent chooses
a slot in turn. (Readers who do not intend to read the proof for lemma 1
can safely skip to section 4.3.) First, we will subscript d to indicate the total
number of agents in the distribution, so that we can describe the distributions
that result after only a subset of agents have chosen slots. By d∗

i we denote the
optimal distribution of i agents. Second, we define ∆(di, s) to be the increase
in z if one agent is added to slot s, relative to di. Define the decomposition
∆(di, s) = ∆E(di, s) + ∆g(di, s), where ∆E(di, s) is the increase in E[R|Φ, di],
and ∆g(di, s) is the increase in g(di). In equilibrium ∆E(di, s) does not depend
on di, but only on p(s) and m. (We assume here that p does not depend on
d∗

i .) Two properties follow from the fact that g is superlinear summation:

(1) ∆g(di, s) is strictly monotonically decreasing in di(s)
(2) ∆g(di, s) = ∆g(d

′
j, s) for all distributions d′

j where d′
j(s) = di(s)

Since ∆E does not depend on di, ∆ also has these properties.

We now describe a function γ: let γ(i) represent the slot number that will be
assigned to ai, where ai is the ith agent to register. Let dγ

i (s) be the number
of times s occurs in {γ(1), . . . , γ(i)}. We note that ∀s∆(dγ

0(s)) = 0. We can

17



now inductively define γ: γ(i) = arg maxs ∆(dγ
i−1(s)).

Lemma 1 ∀i dγ
i is ideal under Φ2.

PROOF. Please see the appendix.

REMARK. This lemma demonstrates that greedy assignment of slots to
agents leads to an ideal distribution when we assign slots according to γ as
defined above.

4.3 ε-Optimality

Although theorem 3 showed that the bulletin board mechanism cannot be
optimal, it turns out that it can be made arbitrarily close to optimal. We now
show that there exists no other equilibrium of any other mechanism which will
yield a value of z larger than z(Φ2, ϕ2) + ε for arbitrarily small ε.

Theorem 4 (Φ2, ϕ2) is ε-optimal.

PROOF. Please see the appendix.

REMARK. This is a key result, because it shows that we can get arbitrarily
close to an optimal equilibrium with a mechanism that could actually be used
in practice. Furthermore, the fact that the equilibrium is strict is encouraging,
because it means that an agent could not reduce z by deviating from ϕ2

without also reducing his own utility.

4.4 Implementation Considerations

We point out that ε-optimality means that the mechanism can lose ε per agent;
in practice, ε would have to be large enough to overcome agents’ indifference
between nearly-identical payoffs and encourage them to coordinate.

Although we speak about agent strategies throughout this paper, it is worth-
while to note that in a real system these strategies would probably be im-
plemented in software that most users would not be able to change easily.
Of course, this is not an argument against equilibrium analysis or the care-
ful design of economic mechanisms. If agents could gain by deviating, there
would be an incentive for users to change their software, and once software
has been modified it is easily redistributed. However, the fact that the mech-
anism designer could in many cases distribute client software is significant
because it can act as a coordination device: agents’ common knowledge of
using the same software could help them to coordinate to an equilibrium the
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mechanism designer has preselected. Although the bulletin board mechanism
gives rise to non-ε-optimal equilibria, these might be avoided if client software
helped agents to coordinate to ϕ2.

5 Collective Reward Mechanism

We now consider the more general and realistic case where each agent may
have a different vi, bounded by vl and vu, as described in section 2. Recall
that since the network does not know each agent’s v, we can no longer tune
m, q, and p to extract the maximum amount of revenue from each agent.

In this section we also allow the network to give signals to agents, to allow the
agents to coordinate to a desirable equilibrium; we also show how collective
reward may be used to prevent agents from deviating. We define mechanism
Φ3 as follows:

(1) Each agent indicates that he will participate.
(2) The network gives a signal to each agent from {1, . . . , t}.
(3) Agents choose time slots.
(4) The network determines whether each slot will retroactively be made free.

In this mechanism, the chance that slot s will be free, p(s), depends on the
number of agents who chose slot s, d(s). Let count(s) be the number of agents
who were given the signal s. Define d+(s) = d(s)− count(s). For the collective
reward mechanism Φ3:

p(s) ={ pb(s) if d+(s) ≤ 0

0 if d+(s) > 0
(14)

Thus Pi = pb(Ai) if d+(s) ≤ 0 and Pi = 0 otherwise, where pb(·) is defined
below.

We will assign signals to agents so that count(s) = d∗(s), where d∗ is now ideal
for pb(s). The idea of this mechanism is that agents who choose the slot s to
which they are assigned will get that slot free with probability pb(s), and agents
who deviate to another slot will pay m. The p(s) used for this mechanism will
thus differ from p(s) for the previous two mechanisms. The intuitive reason
for the change is that in Φ1 and Φ2 we used p to make agents indifferent
between all slots. Now, however, we use p so that agents will not deviate from
an assignment to a particular slot. We will construct pb so that each agent ai

will choose his assigned slot even when ai has the lowest possible valuation for
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the slot corresponding to his signal, and the highest possible valuation for s,
the most profitable slot to which he could deviate. When an agent is assigned
a slot s �= s, this condition can be formalized as:

vl(s) −
(
1 − pb(s)

)
m = vu(s) − m + ε (15)

Here as before ε is a small, positive value used to make agents strictly prefer
the slot to which they are assigned. It can be interpreted as an offset to vu,
giving us a strict upper bound on agents’ utilities. If we make an agent with
this impossibly high valuation for slot s indifferent between his assigned slot
and s, then any agent who actually plays the game must prefer his assigned
slot. We can now derive pb:

pb(s) ={ vu(s)−vl(s)+ε
m

if s �= s

0 if s = s
(16)

The case of s = s is considered separately because an agent assigned to this
slot has no incentive to deviate. Note that if vi(s) = vi(s) is possible for an
s �= s, then we would have to change the definition of pb to maintain a strict
equilibrium, giving ε′ probability of awarding s free.

We now need to define bounds on m. The condition that pb(s) ≤ 1 can be
rewritten, combined with the requirement that the mechanism be participation-
safe, as:

vu(s) − vl(s) + ε ≤ m ≤ vl(s) (17)

For Φ3 q is defined as:

q =
∑
i�=s

(
vu(s) − vl(i) + ε

m

)
(18)

To maximize expected revenue, the collective reward mechanism sets m to its
upper bound of vl(s).
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5.1 Equilibria

An equilibrium ϕ3 is for each agent aj to select the slot corresponding to his
signal. 6 Consider the case where all other agents follow this strategy, and one
remaining agent ai decides his strategy. If agent ai selects slot s as above, then
his expected utility is ui(s) = vi(s)−

(
1−pb(s)

)
m. Deviating to even the best

slot only gives him ui(s) = vi(s) − m. We have defined pb so that in this case
ai strictly prefers slot s.

There are no equilibria of the collective reward mechanism for which d �= d∗.
Consider any distribution of agents such that d �= d∗. There must be some
s1 such that d+(s1) < 0, and some other s2 such that d+(s2) > 0. An agent
in s2 thus has no chance of a free slot, and he receives utility of at most
vi(s) − m. If he switches to s1, then his probability of receiving a free slot
becomes pb(s1) because d+(s1) ≤ 0. Since pb is constructed so that this agent
receives more utility, on expectation, than vi(s)−m, he has incentive to move
to slot s1. However, there do exist equilibria in which agents do not select slots
corresponding to the signals they receive. For example, consider the case where
agent ai deterministically selects the slot σ(n + 1 − i). (Note that this could
occur even if agent ai did not know what signal agent an+1−i receives.) In this
case the distribution of agents is d∗, and so the analysis above demonstrates
that all agents have a disincentive to deviate. Another example is where all
agents select the slot corresponding to their signals except where agent ai

chooses slot σ(j) and agent aj chooses slot σ(i).

Harmful collusion is not possible under the collective reward mechanism. A
single agent who deviates from ϕ3 can harm other agents by denying them a
chance at a free slot. However, no set of agents is able to improve other agents’
chance of getting a free slot, and so there is no way that a cartel of agents
could benefit from colluding.

Theorem 5 (Φ3, ϕ3) is c-optimal for c = maxs

(
vu(s) − vl(s)

)
+ε.

PROOF. Please see the appendix.

REMARK. Because it depends on bounds rather than on agents’ actual
valuations, ϕ3 is not optimal. However, this theorem shows that we can prove

6 This note is intended for readers familiar with game theory. Consider the space of
all functions H : N → {1, . . . , t} mapping from agent names to suggested slots. Let
Prob be a probability distribution over all functions h ∈ H that give rise to the agent
distribution d∗. If signals are assigned based on an h drawn from Prob then ϕ3 can
easily be formulated as a correlated equilibrium. However, for ease of exposition and
to emphasize the sequential assignment of agent signals for implementation reasons,
we do not make further use of this formulation.
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a bound on the optimality of ϕ3, showing that the network can lose no more
than maxs

(
vu(s) − vl(s)

)
+ε in revenue from each agent.

It follows from this statement that if we revert back to the setting from sections
3 and 4 (where vu(s) = vl(s)), the network will lose only ε in revenue from
each agent. It is only the change to bounds on valuation functions that causes
the weaker claims on optimality for this mechanism and the next.

Corollary 1 (Φ3, ϕ3) is ε-optimal for vl = vu.

PROOF. This follows directly from the preceding theorem, because vl = vu

implies that c = ε.

5.2 Implementation Considerations

We observe that it may involve less overhead to assign single, persistent signals
to agents if the game will be repeated many times. In this case, the collective
reward mechanism may be used as above but without the signalling phase,
and with each agent aj who did not participate counted by d+ as having
participated in slot σ(j). This allows ϕ3 to hold in the case where signals are
not assigned repeatedly with the penalty that ϕ3 will only be c-optimal for
c = maxs

(
vu(s) − vl(s)

)
+ε when all agents participate.

6 Discriminatory Mechanism

A disadvantage of the bulletin board mechanism is that it reimburses some
agents at the end of the game rather than simply waiving their fees. This
requires tracking individual agents’ behavior and executing more financial
transactions, both of which could be costly to the network. Also, the bulletin
board mechanism has non-optimal equilibria. Finally, irrational agents can
harm others in both the bulletin board and collective reward mechanisms.
These problems are eliminated by the discriminatory mechanism, Φ4, which
makes use of agent signals and also discriminates by offering different free
slots to different agents (although, as we will see in section 6.2 it makes new
demands of the network that will sometimes be undesirable):

(1) Each agent indicates that he will participate.
(2) The network assigns signals to agents from {1, . . . , t} according to the d∗

that is ideal for pb.
(3) The network chooses “potentially free” slots according to pb.
(4) Each agent indicates what slot he selects.
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(5) The network checks only those agents in each slot si that was picked to
be “potentially free” (for all agents who chose other slots, Pi = 0) . If
agent aj in slot si has σ(aj) = si then Pj = pb(Aj); otherwise Pj = 0.

6.1 Equilibria

Agent ai’s dominant strategy is to choose the slot corresponding to his signal.
The analysis exactly follows that for ϕ3; we call this equilibrium ϕ4. The
only difference is that an agent’s expected utility does not depend on other
agents’ strategies, and hence ϕ4 is an equilibrium in dominant strategies. A
consequence is that ϕ4 is unique. By exactly the same argument that was given
in the proof of theorem 5, (Φ4, ϕ4) is c-optimal for c = maxs

(
vu(s)−vl(s)

)
+ε.

The same corollary also holds, and so (Φ4, ϕ4) is ε-optimal for the special case
where vu = vl.

It may seem disappointing from a game-theoretic point of view that neither
strategy nor even payoffs under the discriminatory mechanism depend on the
actions of other agents. However, this may be seen as an advantage of the
discriminatory mechanism, since irrational agents are not able to harm others.

6.2 Implementation Considerations

As compared to the collective reward mechanism, the discriminatory mecha-
nism makes two additional demands of the network. First, the network must
keep track of the signals that are given to agents in the second step, so that
they can be verified in the fifth step. In collective reward the system does not
need any sort of user accounts; rather, it greedily assigns signals to agents,
recording only the number of agents who received each signal.

Second, the discriminatory mechanism requires the network to verify user
identities. In contrast, the collective reward mechanism simply counts the
number of agents who chose each slot. Under the discriminatory mechanism
the network only has to check the identity of agents from q slots on expectation,
since agents who choose a slot that is not potentially free do not have to be
checked. It would be possible for the network to assume that all agents in
possibly free slots have played according to the dominant strategy and to
randomly check only a subset of the agents in these slots, but this would
reduce the penalty for defection and thus sacrifice c-optimality.

In order to permit this verification, the mechanism can assign signals to agents
in two different ways. The obvious option is to assign signals to agents as
described in theorem 1, to store the numbers in some sort of user account
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requiring login and then to verify that agents selected the appropriate slot
by requiring them to log in again before using the network resource. This
approach requires further data storage by the mechanism, but the resulting
d will be ideal and thus the mechanism will be c-optimal as argued above.
If this data storage is not desirable, a deterministic function may be used to
calculate the slot that may be offered free to a given agent, and the same
function may be used to determine whether each agent has selected the ap-
propriate slot. For example, a hash of the agent’s IP address—or of any other
identifying information from the packet header—could be used. This approach
has the disadvantage that it sacrifices optimality and for steps 2 and 5 in the
mechanism, but the advantage that no information about identifying individ-
ual agents must be stored by the mechanism. 7 Indeed, if the function itself
is publicized then the first two steps may be omitted from the mechanism,
requiring only one interaction between agents and the network.

7 Comparison of Different Mechanisms

Table 1 summarizes and contrasts the mechanisms discussed in this paper. For
convenience, we have divided the display into three parts: (i) a list of mech-
anism characteristics, (ii) a comparison of the outcomes of the mechanisms,
and (iii) costs associated with executing the mechanisms.

8 Conclusion

Focused loading is a predictable network congestion problem. It is caused by
a preference users have for transacting with a network resource at a specific
time when the network charges transactions equally over a period of time. For
example, focused loading frequently causes web servers to crash. In this paper
we have taken an economic approach to de-focusing load by devising incentive
schemes for encouraging users to desynchronize their transaction times. While
general congestion-management techniques may be applicable to this problem,
the use of a specialized solution is attractive because additional information
about the problem can be used to increase revenue and reduce demands on
the network.

7 Another disadvantage is that an agent could register from one computer, receive
a slot assignment, use the network from a second computer and be denied a chance
for a free slot because the second computer’s IP did not hash to the same signal.
This could be addressed by requiring agents to use the network from the computer
from which they registered, and permitting them to register again if they change
their mind about which machine they want to use.
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Φ1: Φ2: Φ3: Φ4:

Preselection Bulletin Collective Discriminatory

Board Reward

Earliest possible Before any After all After each After each

free slot selection time slots time slots time slot time slot

Agent signals No No Yes Yes

The network must No No No Yes, or

store agent signals hash IP

Agents may have No No Yes Yes

different v functions

Time required for None Substantial Negligible Negligible

coordination phase

Type of equilibrium Weak Strict Strict Dominant

or strategy equilibrium equilibrium equilibrium strategy

Non-optimal Yes Yes No No

equilibria exist

Revenue increases No Yes Yes Yes

if agents deviate

Harmful collusion No No No No

Irrational actions No actions Yes Yes No

harm other agents are irrational

Time cost after O(n) O(n) O(n) O(n)
coordination phase

Storage cost O(q) O(t) O(n) O(n)
(free slots) (d) (moves) (signals, identities)

Communication cost O(n) O(nt) O(n) O(n)

Table 1
Comparison of Φ1, Φ2, Φ3, Φ4

We present a theoretical model of the problem, and discuss four mechanisms
that induce selfish agents to smooth out their resource demands by probabilis-
tically waiving the cost of resource usage. We show one very simple mechanism
that achieves a weak load-balancing equilibrium, and three other, somewhat
more complex mechanisms that balance load in strict equilibria or dominant
strategies. Two of our mechanisms concern the case where all agents have the
same valuations for different time slots, and two generalize to the case where
the mechanism knows only bounds on agent valuations. We prove optimality
and ε-optimality of the revenue/load balancing trade-off in the first case, and
a bound on the optimality of this trade-off in the second case.

In future work, we plan to apply the methods proposed in this paper to de-
focus the load at web servers operating under transaction deadlines.
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A Proofs of Theorems

Theorem 1 (Φ1, ϕ
∗
1) is optimal.

PROOF. Let E[Ri|Φ, ϕ] be the expected revenue extracted from agent ai,
given mechanism Φ and equilibrium ϕ. First, we prove by contradiction that
Φ1 yields at least as large a z as any other Φ, both given the same equilibrium
of the respective mechanisms. Assume that there exists a pair (Φ, ϕ) such
that z(Φ, ϕ) > z(Φ1, ϕ). Since the equilibrium is constant, we can expand
z on both sides and simplify to get E[R|Φ, ϕ] > E[R|Φ1, ϕ], which implies
E[Ri|Φ, ϕ] > E[Ri|Φ1, ϕ] for at least one agent ai. Φ1 sets values of p, q and
m so that for all slots agent ai’s expected utility is v(s) − E[Ri|Φ1, ϕ] = 0.
Thus for Φ we have ∀s ui(s) < 0, implying that Φ is non-participation-safe, a
contradiction.

Second, we consider the case where Φ and Φ1 give rise to different equilibria.
As described above, under ϕ∗

1 agents deterministically distribute themselves
so as to give rise to the distribution d∗. Recall that d∗ is an ideal distribution:
∀ϕ

(
z(Φ1, ϕ

∗
1) ≥ z(Φ1, ϕ)

)
. Thus, ∀Φ, ϕ z(Φ1, ϕ

∗
1) ≥ z(Φ1, ϕ) ≥ z(Φ, ϕ). �

Theorem 2 When agents have identical utility functions and no signals are
given to agents and the network preselects p before agents move, all equilibria
are either weak or focused-loading.

PROOF. Consider two agents ai and aj, without restriction. The network
has only three choices with respect to ai’s preferences:

(1) ai strictly prefers some slot sk to every other slot. However, every other
agent aj has the same preference. Therefore, no agents will choose any
other slot. This is a strict equilibrium, but it is also a focused-loading
equilibrium.

(2) ai will (non-strictly) prefer some slot sk to all other slots: he will strictly
prefer sk to sl, and will be indifferent between sk and at least one other
slot. Thus no agents will choose slot sl, and g will not be minimized. Any
set of mixed strategies over slots between which agents are indifferent will
constitute a weak equilibrium.

(3) ai is indifferent between all pairs of slots sk and sl. In this case ai receives
the same payment regardless of his action, so randomizing uniformly over
all the slots is not a dominated strategy. Indeed, randomization is a weak,
load-balancing equilibrium, as shown above.

The only strict equilibrium is a focused-loading equilibrium; all other equilibria
are weak. �
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Theorem 3 There does not exist an optimal (Φ, ϕ) for which ϕ is a strict
equilibrium and m ≤ v(s).

PROOF. We will prove this statement by contradiction. Assume that there
exists an optimal (Φ, ϕ) in which ϕ is a strict equilibrium. Since ϕ is a strict
equilibrium, the difference (call it x) between expected utility from slot s
and the highest expected utility of any other slot must be positive. By the
assumption that m ≤ v(s), deviation to s would result in no less than 0
utility. Thus by strictness of ϕ, agents in slots s �= s have positive expected
utility of x. If we create Φ′ by altering Pi so that the expected utility of s is
decreased by x, then the revenue is increased, and it is still an equilibrium
(albeit weak) for ai to select slot s. The fact that revenue is higher in (Φ′, ϕ)
than (Φ, ϕ) but that both give rise to the same distribution contradicts the
claim that (Φ, ϕ) is optimal. �

Lemma 1 ∀i dγ
i is ideal under Φ2.

PROOF. Define di ≥ d′
j as ∀s di(s) ≥ d′

j(s). We will prove the following
statement that is stronger than the theorem: ∀j, i ≥ j, there exists an ideal dis-
tribution d∗

i such that d∗
i ≥ dγ

j .

We will first prove this statement by induction on j. The base case, where
j = 0, trivially holds because ∀s dγ

0(s) = 0.

For the inductive step, assume that there exists a d∗
i for all i ≥ j such that

d∗
i ≥ dγ

j , in order to prove that there exists a d∗
i for all i ≥ j + 1 such that

d∗
i ≥ dγ

j+1. From the inductive assumption we know that there exists a d∗
i ≥ dγ

j

for each i ≥ j + 1. Let sk = γ(j + 1): hence sk = arg maxs ∆(dγ
j , s).

We now prove that there exists an ideal distribution d′∗
i consistent with this

greedy choice. If d∗
i (sk) ≥ dγ

j (sk)+1, then d′∗
i = d∗

i . Otherwise, d∗
i (sk) = dγ

j (sk).
Consider a slot sl where d∗

i (sl) ≥ dγ
j (sl)+1. Let Υ(d, s, c) be distribution d but

with c agents added to slot s. Let d′ = Υ(d∗
i , sl,−1), and let d′′ = Υ(d′, sk, 1).

We know from the first property of ∆ that ∀s (∆(d′, s) ≤ ∆(dγ
j , s)), since

d′ ≥ dγ
j . Similarly, from the second property of ∆ we know that ∆(d′, sk) =

∆(dγ
j , sk), since d′(sk) = dγ

j (sk). Therefore, s = sk maximizes ∆(d′, s). This
implies that z(Φ, d′′) ≥ z(Φ, Υ(d′, sl, 1)). Since Υ(d′, sl, 1) = d∗

i is ideal, d′′

must also be ideal. Since d′′ ≥ dγ
j+1, we have proven the inductive step. �

Theorem 4 (Φ2, ϕ2) is ε-optimal.

PROOF. First, we prove by contradiction that Φ2 yields z that is within nε
of any other Φ, both given the same equilibrium. Assume that there exists a
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pair (Φ, ϕ) such that z(Φ, ϕ) > z(Φ2, ϕ) + nε. Since the equilibrium is the
same for both mechanisms, we can expand z on both sides and simplify to get
E[R|Φ, ϕ] > E[R|Φ2, ϕ] + nε, which implies E[Ri|Φ, ϕ] > E[Ri|Φ2, ϕ] + ε for
at least one agent ai. Φ2 sets values of p, q and m so that for all slots agent ai’s
expected utility is v(s) − E[Ri|Φ2, ϕ] = ε. Thus for Φ we have ∀s ui(s) < 0,
implying that Φ is non-participation-safe, a contradiction.

Second, we now consider the case where Φ and Φ2 have different equilibria.
As shown above in lemma 1, the ideal distribution d∗ is achieved by (Φ2, ϕ2),
hence ∀Φ, ϕ z(Φ2, ϕ2) ≥ z(Φ2, ϕ) ≥ z(Φ, ϕ) − nε. �

Theorem 5 (Φ3, ϕ3) is c-optimal for c = maxs

(
vu(s) − vl(s)

)
+ε.

PROOF. Define vl+c−ε(s) = vl(s) + c − ε: an upper bound on vu and thus
on all possible v functions for agents. We now define variants of Φ3 based
on different agent v functions: Φa

3 when agents have different, arbitrary v
functions, and Φl

3 and Φl+c−ε
3 for the cases when all agents’ functions are vl

and vl+c−ε, respectively. In each variant we assume that the network has full
knowledge of agents’ valuations and can set different p’s for each agent. Let da,
dl, and dl+c−ε be the corresponding ideal distributions arising from ϕ3 in their
respective mechanisms. The revenue extracted from each agent in equilibrium
of Φa

3 , Φl
3 or Φl+c−ε

3 is: (1 − p(s))m = (1 − v(s)−v(s)+ε
v(s)

)v(s) = v(s) − ε. We
also make the change that each of these variants of Φ3 sets ε = 0 when it
determines pb. This has the consequence that equilibrium ϕ3 still holds but is
no longer strict. Each variant will then extract the full v(s) from each agent
in ϕ3. Each of these mechanism-equilibrium pairs is optimal, following an
argument analogous to the one given in the proof of theorem 1 (not given here):
the mechanism makes each agent pay exactly his valuation, and achieves an
ideal distribution. Thus, for any set of arbitrary v functions that Φ3 encounters,
z(Φa

3 , ϕ3) represents the optimal evaluation. We now bound how far Φ3 can
be from this amount.

By definition, z(Φl
3 , ϕ3) = g(dl)+

∑
i v

l(si). We know that dl+c−ε = dl because
vl+c−ε differs only by a constant from vl at each slot. Thus, z(Φl+c−ε

3 , ϕ3) =
z(Φl+c−ε

3 , ϕ3) = g(dl) +
∑

i v
l+c−ε(si) = g(dl) +

∑
i v

l(si) + (c − ε)n. This
implies that z(Φl

3 , ϕ3) + (c − ε)n = z(Φl+c−ε
3 , ϕ3); it remains to show that

z(Φl+c−ε
3 , ϕ3) ≥ z(Φa

3 , ϕ3). Note that z(Φl+c−ε
3 , ϕ3) ≥ z(Φl+c−ε

3 , ϕ3) by defi-
nition of dl. Also, z(Φl+c−ε

3 , ϕ3) ≥ z(Φa
3 , ϕ3) because vl+c−ε is an upper bound

on each of the v’s in the case of Φa
3 and g(da) is common to both terms. Thus

z(Φl
3 , ϕ3) + (c − ε)n = z(Φl+c−ε

3 , ϕ3) ≥ z(Φa
3 , ϕ3). Now we return to the

real Φ3. The optimal distribution is dl, and in ϕ3 the network extracts ε less
revenue from each agent than Φl

3 did because it does not set ε = 0. Thus,
z(Φ3, ϕ3) + nε = z(Φl

3 , ϕ3). Combining the last two equations, we can con-
clude: z(Φ3, ϕ3) + cn ≥ z(Φa

3 , ϕ3), and thus that ϕ3 is c-optimal. �
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